[1]魏立豪,张飞鹏,詹淑君,等.多序列MR影像组学模型对FNH及HCC的诊断价值[J].福建医药杂志,2024,46(04):26-30.[doi:10.20148/j.fmj.2024.04.007]
点击复制

多序列MR影像组学模型对FNH及HCC的诊断价值()
分享到:

《福建医药杂志》[ISSN:1002-2600/CN:35-1071/R]

卷:
46
期数:
2024年04期
页码:
26-30
栏目:
临床研究
出版日期:
2024-08-15

文章信息/Info

文章编号:
1002-2600(2024)04-0026-05
作者:
魏立豪1张飞鹏1詹淑君1林景恋1肖慧君1张梅2
1 福建医科大学附属漳州市医院医学影像科,漳州 350600; 2 成都开放大学,成都 610213
关键词:
肝细胞癌 局灶性结节性增生 影像组学 磁共振成像
分类号:
R735.7; R445.2
DOI:
10.20148/j.fmj.2024.04.007
文献标志码:
B
摘要:
目的 本研究旨在探讨弥散加权成像(DWI)及C序列联合构建的影像组学模型对局灶性结节增生(FNH)及肝细胞癌(HCC)的鉴别诊断价值。方法 通过回顾性分析2011年至2021年间在福建医科大学附属漳州市医院确诊的196名患者的MRI图像,采用DWI及C序列的图像,各自提取了多种影像组学特征,将提取出的特征进行联合降维、筛选,使用LR分类器,构建HCC和FNH的影像组学鉴别模型。结果 该影像组学模型在诊断HCC和FNH方面表现出良好的诊断效能,其中曲线下面积(AUC)值为0.900,准确度0.833,敏感度0.800,特异性0.867。结论 DWI及C序列联合构建的影像组学模型在FNH与HCC的鉴别诊断中展现出显著价值,能够有效地区分FNH和HCC,有助于提高诊断准确性、优化治疗方案选择及改善患者预后具有重要意义。

参考文献/References:

[1] ZHANG W B,HOU S Z,CHEN Y L,et al. Deep learning for approaching hepatocellular carcinoma ultrasound screening dilemma:identification of α-fetoprotein-negative hepatocellular carcinoma from focal liver lesion found in high-risk patients[J].Front Oncol,2022,12:862297.
[2] LIU Y,ZHANG J,WANG Z,et al. Multi-omics characterization reveals the pathogenesis of liver focal nodular hyperplasia[J].iScience,2022,25(9):104921.
[3] FAN X,XIE N,CHEN J,et al. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer[J].Front Oncol,2022,12:839621.
[4] NIE P,YANG G,GUO J,et al. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver[J].Cancer Imaging,2020,20(1):20.
[5] ZHANG T,XU Z,LIU G,et al. Simultaneous identification of EGFR,KRAS,ERBB2,and TP53 mutations in patients with non-small cell lung cancer by machine learning-derived three-dimensional radiomics[J].Cancers(Basel),2021,13(8):1814.
[6] KATIRTZIDOU E,RAGER O,VAROQUAUX A D,et al. Detection of distant metastases and distant second primary cancers in head and neck squamous cell carcinoma: comparison of[(18)F]FDG PET/MRI and[(18)F]FDG PET/CT[J].Insights Imaging,2022,13(1):121.
[7] ZHONG Q Z,LONG L H,LIU A,et al. Radiomics of multiparametric MRI to predict biochemical recurrence of localized prostate cancer after radiation therapy[J].Front Oncol,2020,10:731.
[8] ZHANG R,WEI W,LI R,et al. An MRI-Based radiomics model for predicting the benignity and malignancy of bi-rads 4 breast lesions[J].Front Oncol,2021,11:733260.
[9] HONG D,ZHANG L,XU K,et al. Prognostic value of pre-treatment CT radiomics and clinical factors for the overall survival of advanced(ⅢB-Ⅳ)lung adenocarcinoma patients[J].Front Oncol,2021,11:628982.
[10] QIAN X,LU X,MA X,et al. A Multi-Parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma[J].Front Oncol,2022,12:838701.
[11] WEI M,ZHANG Y,BAI G,et al. T2-weighted MRI-based radiomics for discriminating between benign and borderline epithelial ovarian tumors: a multicenter study[J].Insights Imaging,2022,13(1):130.
[12] VERDUIN M,PRIMAKOV S,COMPTER I,et al. Prog-nostic and predictive value of integrated qualitative and quantitative magnetic resonance imaging analysis in glioblastoma[J].Cancers(Basel),2021,13(4):722.
[13] HAN X,FAN J,ZHENG Y,et al. The value of CT-Based radiomics for predicting spread through air spaces in stage IA lung adenocarcinoma[J].Front Oncol,2022,12:757389.
[14] THRUSSELL I,WINFIELD J M,ORTON M R,et al. Radiomic features from diffusion-weighted MRI of retroperitoneal soft-tissue sarcomas are repeatable and exhibit change after radiotherapy[J].Front Oncol,2022,12:899180.
[15] DANALA G,MARYADA S K,ISLAM W,et al. A comparison of computer-aided diagnosis schemes optimized using radiomics and deep transfer learning methods[J].Bioengineering(Basel),2022,9(6):256.
[16] TONG H,SUN J,FANG J,et al. A Machine learning model based on PET/CT radiomics and clinical characteristics predicts tumor immune profiles in non-small cell lung cancer: a retrospective multicohort study[J].Front Immunol,2022,13:859323.
[17] HAN X,CAO W,WU L,et al. Radiomics assessment of the tumor immune microenvironment to predict outcomes in breast cancer[J].Front Immunol,2021,12:773581.
[18] KAO Y S,LIN K T. A meta-analysis of the diagnostic test accuracy of CT-based radiomics for the prediction of COVID-19 severity[J].Radiol Med,2022,127(7):754-762.
[19] FUJITA S,HAGIWARA A,YASAKA K,et al. Radiomics with 3-dimensional magnetic resonance fingerprinting: influence of dictionary design on repeatability and reproducibility of radiomic features[J].Eur Radiol,2022,32(7):4791-4800.
[20] FENG L,YANG X,LU X,et al.(18)F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma[J].Insights Imaging,2022,13(1):144.
[21] HU Q,WANG G,SONG X,et al. Machine learning based on MRI DWI radiomics features for prognostic prediction in nasopharyngeal carcinoma[J].Cancers(Basel),2022,14(13).
[22] QIU Y,ZHANG X,WU Z,et al. MRI-Based radiomics nomogram: prediction of axillary non-sentinel lymph node metastasis in patients with sentinel lymph node-positive breast cancer[J].Front Oncol,2022,12:811347.
[23] BI Q,WANG Y,DENG Y,et al. Different multiparametric MRI-based radiomics models for differentiating stage IA endometrial cancer from benign endometrial lesions: A multicenter study[J].Front Oncol,2022,12:939930.

备注/Memo

备注/Memo:
基金项目:福建省卫生健康青年科研课题(2020QNA076)
通信作者:张飞鹏,Email:zhang200207@163.com
更新日期/Last Update: 2024-08-15