参考文献/References:
[1] ZHANG W B,HOU S Z,CHEN Y L,et al. Deep learning for approaching hepatocellular carcinoma ultrasound screening dilemma:identification of α-fetoprotein-negative hepatocellular carcinoma from focal liver lesion found in high-risk patients[J].Front Oncol,2022,12:862297.
[2] LIU Y,ZHANG J,WANG Z,et al. Multi-omics characterization reveals the pathogenesis of liver focal nodular hyperplasia[J].iScience,2022,25(9):104921.
[3] FAN X,XIE N,CHEN J,et al. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer[J].Front Oncol,2022,12:839621.
[4] NIE P,YANG G,GUO J,et al. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver[J].Cancer Imaging,2020,20(1):20.
[5] ZHANG T,XU Z,LIU G,et al. Simultaneous identification of EGFR,KRAS,ERBB2,and TP53 mutations in patients with non-small cell lung cancer by machine learning-derived three-dimensional radiomics[J].Cancers(Basel),2021,13(8):1814.
[6] KATIRTZIDOU E,RAGER O,VAROQUAUX A D,et al. Detection of distant metastases and distant second primary cancers in head and neck squamous cell carcinoma: comparison of[(18)F]FDG PET/MRI and[(18)F]FDG PET/CT[J].Insights Imaging,2022,13(1):121.
[7] ZHONG Q Z,LONG L H,LIU A,et al. Radiomics of multiparametric MRI to predict biochemical recurrence of localized prostate cancer after radiation therapy[J].Front Oncol,2020,10:731.
[8] ZHANG R,WEI W,LI R,et al. An MRI-Based radiomics model for predicting the benignity and malignancy of bi-rads 4 breast lesions[J].Front Oncol,2021,11:733260.
[9] HONG D,ZHANG L,XU K,et al. Prognostic value of pre-treatment CT radiomics and clinical factors for the overall survival of advanced(ⅢB-Ⅳ)lung adenocarcinoma patients[J].Front Oncol,2021,11:628982.
[10] QIAN X,LU X,MA X,et al. A Multi-Parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma[J].Front Oncol,2022,12:838701.
[11] WEI M,ZHANG Y,BAI G,et al. T2-weighted MRI-based radiomics for discriminating between benign and borderline epithelial ovarian tumors: a multicenter study[J].Insights Imaging,2022,13(1):130.
[12] VERDUIN M,PRIMAKOV S,COMPTER I,et al. Prog-nostic and predictive value of integrated qualitative and quantitative magnetic resonance imaging analysis in glioblastoma[J].Cancers(Basel),2021,13(4):722.
[13] HAN X,FAN J,ZHENG Y,et al. The value of CT-Based radiomics for predicting spread through air spaces in stage IA lung adenocarcinoma[J].Front Oncol,2022,12:757389.
[14] THRUSSELL I,WINFIELD J M,ORTON M R,et al. Radiomic features from diffusion-weighted MRI of retroperitoneal soft-tissue sarcomas are repeatable and exhibit change after radiotherapy[J].Front Oncol,2022,12:899180.
[15] DANALA G,MARYADA S K,ISLAM W,et al. A comparison of computer-aided diagnosis schemes optimized using radiomics and deep transfer learning methods[J].Bioengineering(Basel),2022,9(6):256.
[16] TONG H,SUN J,FANG J,et al. A Machine learning model based on PET/CT radiomics and clinical characteristics predicts tumor immune profiles in non-small cell lung cancer: a retrospective multicohort study[J].Front Immunol,2022,13:859323.
[17] HAN X,CAO W,WU L,et al. Radiomics assessment of the tumor immune microenvironment to predict outcomes in breast cancer[J].Front Immunol,2021,12:773581.
[18] KAO Y S,LIN K T. A meta-analysis of the diagnostic test accuracy of CT-based radiomics for the prediction of COVID-19 severity[J].Radiol Med,2022,127(7):754-762.
[19] FUJITA S,HAGIWARA A,YASAKA K,et al. Radiomics with 3-dimensional magnetic resonance fingerprinting: influence of dictionary design on repeatability and reproducibility of radiomic features[J].Eur Radiol,2022,32(7):4791-4800.
[20] FENG L,YANG X,LU X,et al.(18)F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma[J].Insights Imaging,2022,13(1):144.
[21] HU Q,WANG G,SONG X,et al. Machine learning based on MRI DWI radiomics features for prognostic prediction in nasopharyngeal carcinoma[J].Cancers(Basel),2022,14(13).
[22] QIU Y,ZHANG X,WU Z,et al. MRI-Based radiomics nomogram: prediction of axillary non-sentinel lymph node metastasis in patients with sentinel lymph node-positive breast cancer[J].Front Oncol,2022,12:811347.
[23] BI Q,WANG Y,DENG Y,et al. Different multiparametric MRI-based radiomics models for differentiating stage IA endometrial cancer from benign endometrial lesions: A multicenter study[J].Front Oncol,2022,12:939930.